Why is the Higgs Boson Called the ‘God Particle’?


We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the next week to explain some of the mysteries of the Higgs boson. Read the previous post: “What is the Higgs boson?”

The Higgs field was invented to explain how otherwise massless force particles could acquire mass, and was used by Weinberg and Salam to develop a theory of the combined ‘electro-weak’ force and predict the masses of the W and Z bosons. However, it soon became apparent that something very similar is responsible for the masses of the matter particles, too.

The way the Higgs field interacts with otherwise massless boson fields and the way it interacts with massless fermion fields is not the same (the latter is called a Yukawa interaction, named for Japanese physicist Hideki Yukawa). Nevertheless, the Higgs field clearly has a fundamentally important role to play. Without it, both matter and force particles would have no mass. Mass could not be constructed and nothing in our visible universe could be.

In his popular book The God Particle: If the Universe is the Answer, What is the Question?, first published in 1993, American physicist Leon Lederman (writing with Dick Teresi) explained why he’d chosen this title:

This boson is so central to the state of physics today, so crucial to our final understanding of the structure of matter, yet so elusive, that I have given it a nickname: the God Particle. Why God Particle? Two reasons. One, the publisher wouldn’t let us call it the Goddamn Particle, though that might be a more appropriate title, given its villainous nature and the expense it is causing. And two, there is a connection, of sorts, to another book, a much older one…

Lederman went on to quote a passage from the Book of Genesis. This is a nickname that has stuck. Most physicists seem to dislike it, as they believe it exaggerates the importance of the Higgs boson. Higgs himself doesn’t seem to mind.