Is the Particle Recently Discovered at CERN’s LHC the Higgs Boson?


We’re celebrating the release of Higgs: The Invention and Discovery of the ‘God Particle’ with a series of posts by science writer Jim Baggott over the week to explain some of the mysteries of the Higgs boson. Read the previous posts: “What is the Higgs boson?” and “Why is the Higgs boson called the ‘god particle’?”

Experimental physicists are by nature very cautious people, often reluctant to speculate beyond the boundaries defined by the evidence at hand.

Although the Higgs mechanism is responsible for the acquisition of mass, the theory does not give a precise prediction for the mass of the Higgs boson itself. The search for the Higgs boson, both at Fermilab’s Tevatron collider and CERN’s Large Hadron Collider (LHC), has therefore involved elaborate calculations of all the different ways a Higgs boson might be created in high-energy particle collisions, and all the different ways it may decay into other elementary particles.

At CERN, the attentions of physicists working in the two main detector collaborations, ATLAS and CMS, have been drawn to Higgs decay pathways involving the production of two photons (which we write as H → γγ), a pathway leading to two Z bosons and thence four leptons (particles such as electrons and positrons, written H → ZZ → ι+ι-ι+ι-) and a pathway leading to two W particles and thence to two leptons and two neutrinos (H → W+W- → ι+υ ι-υ).

Finding the Higgs boson is then a matter of looking for its decay products — in this case the photons and leptons that result — at all the different masses that the Higgs may in theory possess. Just to make life more difficult, at the particle collision energies available at the LHC, there are lots of other processes that can produce photons and leptons, and this background must be calculated and subtracted from the observed decay events. Any events above background that produce two photons, four leptons or two leptons (and ‘missing’ energy, as neutrinos cannot be detected) then contribute to the evidence for the Higgs boson.

What the CERN scientists announced on 4 July was a statistically significant excess of decay events consistent with a Higgs boson with a mass between 125-126 billion electron volts, about 134 times the mass of a proton. This is definitely a new boson, one that decays very much like a Higgs boson is expected to decay. But, until the scientists can gather more data on its physical properties, they can’t say for sure precisely what kind of boson it is.

It’s also important to note that although the Higgs boson is predicted by the standard model of particle physics, there are theories that also predict the existence of a Higgs boson (actually, they predict many Higgs bosons). Until the scientists gather more data, they can’t be sure the new particle is precisely the particle predicted by the standard model. We just need to be patient and stay tuned.